Photonic functional memory

- Advertisement -

New photonic, functional memory based on tin oxide slanted nanorod arrays in which both the optical and electrical stimuli can be used to modulate switching characteristics shows potential for developing high-density and high-efficiency computing systems.

Currently, various research groups worldwide are designing and realizing non-volatile, ultrafast, reliable, functional memory systems that outperform traditional silicon-based flash memories. In this big data era, a new class of data storage devices that can overcome the physical limitations of the existing memory technologies is being pursued vigorously. One such class of memories is commonly known as memristor (an acronym for memory resistor), which can store and process data through electrical signals.

Recently, researchers from the Centre for Nano and Soft Matter Sciences (CeNS), Bangalore, an autonomous institution of the Department of Science and Technology (DST), Govt. of India, have designed such a functional memory based on tin oxide slanted nanorod arrays that shows great potential for the development of high-density and high-efficient computing systems. In this restive memory (non-linear passive two-terminal electrical component which changes its internal resistance between high and low resistance states), both the optical and electrical stimuli can be used to modulate the switching characteristics, including multilevel cell operation.

- Advertisement -